Aluminum Nitride to Extend Durability of Solar Stations

Date: 2018-12-11
Views: 107

Research group, consisting of scientists from Central Metallurgical R&D Institute (Cairo) and National University of Science and Technology MISIS (Moscow) have developed a composite material that can extend the durability of solar towers - stations that collect thermal energy of the Sun - from 2-3 to 5 years. The article on the research is published in Renewable Energy.

Aluminum Nitride to Extend Durability of Solar Stations

This is a typical solar power tower (PRNewsfoto/NUST MISiS)

Photovoltaic power stations (PV systems) are becoming more and more popular, as they allow to collect and recycle thermal energy of the Sun on industrial scale. Among the most promising types of PV systems are solar towers. Solar tower is a high construction with water tank and turbine system inside. The tower is surrounded by heliostats - big rotating mirrors that capture the sunlight and concentrate it in one point on the tower as a giant light beam. The beam reaches the receiver (heat-absorbing element), which, in its turn, heats liquid sodium up to 600°C. This temperature heats the neighboring water tank, and the steam spins the turbines of the station.

Traditionally, for the receivers SiC (silicon carbide) is used: it is porous, highly dense, durable, and resistant to oxidation. However, SiC has some disadvantages: for instance, it is sensitive to aggressive environment of liquid sodium.

A promising addition to SiC is AlN (aluminum nitride), which has high thermal conductivity, low thermal expansion coefficient and high heat resistance. Now SiC/AlN composites are used mainly in electronics, but can potentially be used in different spheres, including solar energy.

Scientists from Central Metallurgical R&D Institute (CMRDI) (Cairo) together with scientists from National University of Science and Technology MISIS (NUST MISIS) (Moscow) have developed porous composites based on SiC/AlN, containing up to 40% of AlN. In the process of the work, the optimal compositions of additives and sintering regimes of new composites were selected, which significantly exceed the traditional ones due to the formation of a solid solution at the grain boundaries of silicon carbide. Along with high thermal conductivity and heat resistance, such composites have a low coefficient of thermal expansion, which significantly improves their performance.

"The volumetric air receiver based ceramics is a hot topic in these days because the solar energy trend needs long term materials without defects, - the Head of the research team from the Egyptian side, Head of Refractory & Ceramic Materials Division of CMRDI, Dr. Emad Ewais comments. - The further prospects lay is testing of the composite in the solar furnace to evaluate its efficiency as volumetric air receiver".

Due to good thermochemical and thermomechanical properties, SIC/AlN composites are also promising for use in other high-temperature fields, such as metallurgy and aerospace engineering.

SOURCE The National University of Science and Technology MISiS

News / Recommended news More
2019 - 02 - 12
Fraunhofer IAF develops electronic components and systems based on GaN. The image shows a processed GaN wafer. Credit: Fraunhofer Institute for Applied Solid State Physics IAFThe electronics market is growing constantly and so is the demand for increasingly compact and efficient power electronic systems. The predominant electronic components based on silicon will in the foreseeable future no longe...
2019 - 01 - 21
Medical magnetic resonance imaging, high-power microwave generators, superconducting magnetic energy storage units, and the solenoids in nuclear fusion reactors are very different technologies which all critically rely on the ability of superconducting materials to carry and store large electric currents in a compact space without overheating or dissipating large amounts of energy.Despite their ex...
2019 - 01 - 14
Solar Concentrator Array. Credit: Wikimedia CommonsOpen-cell materials, such as metal and ceramic foams, have been extensively utilized in high-temperature applications due to their light weight, good flow-mixing capability, and ability to cover a large surface area. They are commonly composed of interconnected solid struts and accessible void spaces, as shown in Fig. 1.Figure 1 Typical open-cell ...
2019 - 01 - 08
Researchers have developed a ceramic-based mechanical pump able to operate at record temperatures of more than 1,400 degrees Celsius (1,673 Kelvin), opening the door to a new generation of energy conversion and storage systems.The pump was developed by researchers at the Georgia Institute of Technology in collaboration with researchers from Purdue University and Stanford University. The research w...
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel: 4000 778 909

Guangzhou Branch
Tel: 020-8327 6389

IACE CHINA Official Website