Printing makes conjugated polymers less twisted

Date: 2019-09-06
Views: 220

Researchers have found a way to use 3D printing to stretch and flatten twisted polymers so that they conduct electricity better. The researchers, led by chemical and biomolecular engineers from the University of Illinois at Urbana-Champaign, report their findings.

Conjugated polymers are formed from the union of electron-rich molecules along a backbone of alternating single and double chemical bonds. This conjunction allows electricity to travel very quickly through the polymer, making it highly desirable for use in electrical and optical applications. Indeed, this mode of transporting charges works so well that conjugated polymers are now poised to compete with silicon materials, the researchers said.

However, these polymers tend to contort into twisted spirals when they form, severely impeding charge transport.

'The flatness or planarity of a conjugated polymer plays a large role in its ability to conduct electricity,' said Ying Diao, a chemical and biomolecular engineering professor at the University of Illinois at Urbana-Champaign, who led the study. 'Even a slight twist of the backbone can substantially hinder the ability of the electrons to delocalize and flow.'

It is possible to flatten conjugated polymers by applying an enormous amount of pressure or by manipulating their molecular structure, but both techniques are very labor-intensive. 'There really is no easy way to do this,' said Diao.

However, while running printing experiments and flow simulations in Diao's lab, postdoctoral researcher Kyung Sun Park and graduate student Justin Kwok noticed something. Polymers go through two distinct phases of flow during printing: the first phase occurs when capillary action pulls on the polymer ink as it begins to evaporate, while the second phase is the result of the forces imposed by the printing blades and substrate.

'Park and Kwok uncovered another phase that occurs during printing in which the polymers appear to have vastly different properties,' Diao said. 'This third phase occurs in between the two already-defined phases, and shows the polymers being stretched into planar shapes.'

Not only are the polymers stretched and flattened in this third phase, but they also remain that way after precipitating out of solution, Diao said. This makes it possible to fine-tune printer settings to produce flat conjugated polymers for use in new, faster biomedical devices and flexible electronics.

'We are discovering a whole zoo of new polymer phases, all sensitive to the forces that take place during the printing process,' Diao said. 'We envision that these unexplored equilibria and flow-induced phases will ultimately translate into new conjugated polymers with exciting optoelectronic properties.'


News / Recommended news More
2020 - 01 - 16
Last week India’s aluminium industry called upon New Delhi to cut basic customs duties on aluminium fluoride and other raw materials necessary for aluminium production, as such duties make it all but impossible for domestic producers to compete in the global marketplace.In comments regarding the proposed Union Budget for the next fiscal year, the Aluminium Association of India (AAI) aske...
2020 - 01 - 10
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires. Engineers at the University of Illinois have developed a solid polymer-based electrolyte that can self-heal after damage -- and the material can also be recycled without the use of harsh chemicals or high temperatures.The new study could he...
2020 - 01 - 03
When the volcano, Eyjafjallajökull, erupted in Iceland in 2010, it paralyzed air traffic in large parts of Europe. Volcanoes pose a threat to aircrafts as ash, which commonly contains calcium magnesium aluminum silicates (CMAS), causes significant damage to turbines. Similarly, fly ash, which is a fine powder produced as a byproduct of burning pulverized coal in electric generation power plan...
2019 - 12 - 27
Since the early 20th Century, we have been in the midst of an energy crisis and environmental burden where global warming and limited energy resources are of the utmost concern. Thermoelectric ceramics are becoming increasingly studied for their potential use in energy generators and thermoelectric harvesting.Thermoelectric MaterialsThermoelectric materials convert waste heat energy into elec...
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel: 4000 778 909

Guangzhou Branch
Tel: 020-8327 6389

IACE CHINA Official Website