News

News

Stretchable, degradable semiconductors

Date: 2019-12-06
Views: 232

Stretchable, degradable semiconductors

To seamlessly integrate electronics with the natural world, materials are needed that are both stretchable and degradable -- for example, flexible medical devices that conform to the surfaces of internal organs, but that dissolve and disappear when no longer needed. However, introducing these properties to electronics has been challenging. Now, researchers reporting in ACS Central Science have developed stretchable, degradable semiconductors that could someday find applications in health and environmental monitoring.


Semiconductors, which are essential components of almost all computers and electronic devices, have properties somewhere between conductors and resistors. Most semiconductors are currently made of silicon or other rigid inorganic materials. Scientists have tried making flexible, degradable semiconductors using different approaches, but the products either didn't break down completely or had reduced electrical performance when stretched. Zhenan Bao and colleagues wanted to see if they could solve these problems by combining a rubbery organic polymer with a semiconducting one.


To make their new material, the researchers synthesized and mixed the two degradable polymers, which self-assembled into semiconducting nanofibers embedded in an elastic matrix. Thin films made of these fibers could be stretched to twice their normal length without cracking or compromising electrical performance. When placed in a weak acid, the new material degraded completely within 10 days, but it would likely take much longer in the human body, Bao says. The semiconductor was also non-toxic to human cells growing on the material in a petri dish. According to the researchers, this is the first example of a material that simultaneously possesses the three qualities of semiconductivity, intrinsic stretchability and full degradability.


Via: https://www.eurekalert.org/pub_releases/2019-11/acs-sds110819.php

Note: Content may be edited for style and length.




News / Recommended news More
2020 - 01 - 22
Replacing the volatile and flammable liquid or polymer electrolytes now used in lithium-ion batteries with inorganic solid-state lithium-ionic ceramic conductors could significantly improve both safety and performance of the cells. Solid-state conductors would allow for novel cathode and anode chemistry, prevent the growth of Li-metal dendrites and push miniaturization.Though researchers have inve...
2020 - 01 - 16
Last week India’s aluminium industry called upon New Delhi to cut basic customs duties on aluminium fluoride and other raw materials necessary for aluminium production, as such duties make it all but impossible for domestic producers to compete in the global marketplace.In comments regarding the proposed Union Budget for the next fiscal year, the Aluminium Association of India (AAI) aske...
2020 - 01 - 10
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires. Engineers at the University of Illinois have developed a solid polymer-based electrolyte that can self-heal after damage -- and the material can also be recycled without the use of harsh chemicals or high temperatures.The new study could he...
2020 - 01 - 03
When the volcano, Eyjafjallajökull, erupted in Iceland in 2010, it paralyzed air traffic in large parts of Europe. Volcanoes pose a threat to aircrafts as ash, which commonly contains calcium magnesium aluminum silicates (CMAS), causes significant damage to turbines. Similarly, fly ash, which is a fine powder produced as a byproduct of burning pulverized coal in electric generation power plan...
Share:
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel: 4000 778 909 
E-mail:irisexpo@163.com

Guangzhou Branch
Tel: 020-8327 6389
E-mail:iacechina@unifair.com

IACE CHINA Official Website
犀牛云提供企业云服务
犀牛云提供云计算服务
Scan