News

News

Eindhoven researchers develop light emitting silicon alloy

Date: 2020-04-24
Views: 231

Eindhoven researchers develop light emitting silicon alloy


Researchers at the Eindhoven University of Technology are extremely optimistic about their latest developments in the field of photonics. In a press release last week the TU/e team claimed to have discovered the 'Holy Grail' in the microelectronics industry - creating light emissive silicon. This important development means that light transmission will be able to replace electron flow in silicon chips, with the benefits of removing of electrical resistance and waste heat generated from within processors.


The developments in and the potential offered by photonics in processors and networking equipment is viewed favourably as current silicon chip designs often reach their performance limits due to heat generated by the microscopic circuitry's electrical resistance. As TU/e puts it, today's processors are limited by the heat they generate 'resulting from the resistance that the electrons experience when travelling through the copper lines connecting the many transistors on a chip'. Photonics removes that problem as photons don't experience resistance in their transmission. A particularly striking touted benefit of photonics is that it will not just eliminate the waste heat build-up but it will boost on-chip and chip-to-chip communication by a factor of 1000.


Moving onto TU/e's specific advancement and it says it is the first to have made this materials breakthrough that has been 50 years in the making. Along with researchers from the universities of Jena, Linz and Munich, they have combined silicon and germanium in a hexagonal structure that is able to emit light. A key technique to get the silicon and germanium structures to emit light is the use of a hexagonal template and using the purest crystals available. With this structure the Silicon alloy 'emits light very efficiently,' says one of the paper authors. If things run smoothly, the research team predict that a silicon-based laser in 2020 can be created by the end of 2020.


With both the silicon to allow reading and emitting of light developments in place, the scientists will have enabled the creation of the key silicon components required for in-chip photonic communications. The researchers will be continuing work on their developments, refining the technology and making it more practical.


Via: https://hexus.net/

Note: Content may be edited for style and length.



News / Recommended news More
2020 - 05 - 14
MIM is currently the most scientific near net shape forming technology for metal parts formation. It can flexibly adjust to various performance indexes and has been successfully applied to popular areas such as auto parts, 3C digital, medical equipment and tool locks. Hence, traditional molding technologies such as CNC fine processing, to some extent, are being replaced. Although the future of MIM...
2020 - 05 - 14
The East China Powder Metallurgy Technology Exchange Meeting, rotationally presented by the powder metallurgy societies in East China, has been successfully held for 17 years since 1982. It’s considered as one of the important platforms for China's powder metallurgy industry exchanges, and has actively promoted the flourishing development of the industry and related industries in East China and ev...
2020 - 05 - 14
Ceramic 3D printing can be used in preparation of multifunctional ceramics with complex structure and high precision, and will be widely used in architecture, engineering, medicine, aerospace and more. In recent years, metal and plastic 3D printing companies is shifting to the ceramic materials field that has increasing demand for strong, tough and high temperature resistant parts, which promotes ...
2020 - 05 - 07
Scientists in the University of Maryland (UMD)'s Department of Materials Science and Engineering (MSE) have reinvented a 26,000-year-old manufacturing process into an innovative approach to fabricating ceramic materials that has promising applications for solid-state batteries, fuel cells, 3D printing technologies, and beyond.Ceramics are widely used in batteries, electronics, and extreme environm...
Share:
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel: 4000 778 909 
E-mail:irisexpo@163.com

Guangzhou Branch
Tel: 020-8327 6389
E-mail:iacechina@unifair.com

IACE CHINA Official Website
犀牛云提供企业云服务
犀牛云提供云计算服务
Scan