The Future Of 3-D Printing

Date: 2018-11-14
Views: 167

The Future Of 3-D Printing

3-D printing is an unstoppable force. Not too long ago, the printing speed and limited output of 3-D printers made them suitable only for rapid prototyping. But in the coming years, 3-D printers will be at the heart of full-scale production capabilities in several industries, from aerospace to automotive to health care to fashion. Manufacturing as we know it will never be the same.

The stage for this change wasn’t set overnight. Decades of innovation have led us to the precipice of the 3-D printing industrial revolution. But recent advancements in speed, printing technology and material capabilities are now aligned, and together they will push the entire industry forward.

Along with growing competition and investment in the 3-D printing industry, these new capabilities will reshape custom manufacturing. The 3-D printing industry is on the verge of another tipping point, and here are the reasons why.

Innovations In Direct-Metal Printing

Direct-metal printing is getting faster and more capable, and many new technologies are now coming into play. The number of metal alloys that can be 3-D printed is on the rise, and they have exceptional performance characteristics. You can get high-performance lightweighting and complexity that is impossible with traditional design and manufacturing processes. With these changes, imagine the possibilities: Complex and highly detailed products critical for the aerospace, automative and mechatronic industries will soon be available for production at a fraction of the cost. If your car needs a repair, you’ll soon be able to purchase a shift knob or fuel-door hinge pin that was quickly and inexpensively printed. Aerospace engineers will use the same technology to produce jigs and fixtures for spacecrafts. The implications are staggering. What’s more, there are fully automated, multistation direct-metal printers that are essentially an entire factory in a box. With automated parts changes and material replenishment, they can literally operate around the clock.

GE is a major player in the direct-metal printing field, and the company predicts that its metal business alone will surpass $1 billion in annual revenue in the next couple years. And early-stage companies such as Desktop Metal and Markforged have received several hundred million dollars in funding to deliver entry-level direct-metal systems that print from a metal-plastic filament. 

So on one hand, entry-level grassroots companies will disrupt conventional CNC machining and local machine-shop businesses. And on the other, you see high-complexity precision aeroframe manufacturing solutions from GE and many other 3-D companies.

Innovations In Printing Speed

For decades, 3-D printing has been capable in terms of geometric precision and accuracy, but printing speeds remained very slow. But this too is changing.

The CLIP technology from Carbon 3D and similar technologies from companies like one of mine, Nexa 3D, are capable of continuously printing photo-curable polymers at very high speeds -- 40 or 50 times the speed of a conventional stereolithography 3-D printing system.

With the ability to print a centimeter every minute, these systems will no doubt play a major role in the design-to-manufacturing cycle. While a similar job used to take days, now you can get parts in your hand in five, 10 or 15 minutes.

It will also unleash work with completely new chemistries, particularly within several variants of urethane. You can make the output rigid, semi-rigid or flexible, and these kinds of variations in chemistry open up a lot of end-use applications, from athletic shoes to vehicle interiors to apparel.

Innovations In Selective Laser Sintering

Selective laser sintering (SLS) is the ability to produce parts from a variety of nylon materials. It’s been practiced in a few industries for decades now.

Take the F-18 fighter jet: Every F-18 in service today has been flying with SLS parts for air ducts, electronics covers and many other components for a couple of decades. So that’s not headline news.

But as of late, companies such as HP have entered the market with technology that speeds up production of selective laser-sintered parts. Again, we’re talking dozens of times faster than traditional SLS machines. It will help bring selective laser sintering into the mainstream instead of just confining it to hyper-specific applications like the F-18.

With the advent of these faster machines, companies can increase manufacturing speed and manufacturing scale with significantly more affordability. It’s no longer reserved for exotic military, defense and aerospace applications. It’s ready to go mainstream.

How These Innovations Will Shape The Future 

When you combine all these advancements with infinite computing power in the cloud, IoT connectivity, big data and next-generation robotics, you arrive at the realization of Industry 4.0: a truly cognitive, adaptive and largely self-optimizing factory. And this huge development will largely be catalyzed and fueled by additive manufacturing.

In some industries, 3-D printing has been considered or utilized for several decades. However, the use cases have primarily been in design and prototyping. Industries that have a great deal of familiarity with this technology such as aerospace and automotive are beginning to unlock these capabilities so that others can create working tools, fixtures, jigs and end-use parts. They are just beginning to scratch the surface of 3-D printing for outright manufacturing. 

Many companies will also invest in continuous photopolymer systems. Gartner expects the growth in photopolymer 3-D printers over the next couple years to be in the neighborhood of 75%. In sectors such as health care and personalized medical devices, more and more 3-D printers are being used to create hearing aids, dental fixtures, hip replacements, medical implants and surgical tools. High-speed photopolymer systems are ideal for dental applications, while direct-metal and SLS solutions are a better fit for certain implants.

Perhaps most importantly, another trend that is taking shape is that 3-D printers are now becoming mainstream presences in schools and public libraries. Children aren’t just learning how to use 3-D printing hardware and design software; they’re expecting to be able to use it.

An industry once considered a gimmick is proving itself to be a formidable giant. Make no mistake: 3-D printing will be a force that upends nearly every industry over the coming decade, and its influence is exciting and unstoppable.


News / Recommended news More
2020 - 07 - 02
A Bochum-based team has developed a new process for zinc oxide layers that can be used for nitrogen oxide sensors as well as protection layer on plastic.The application of zinc oxide layers in industry is manifold and ranges from the protection of degradable goods to the detection of toxic nitrogen oxide gas. Such layers can be deposited by atomic layer deposition (ALD) which employs typically che...
2020 - 07 - 02
Grain boundaries in ceramics may not be as chemically stable as previously thought. So say researchers at the University of Wisconsin-Madison in the US who have found that carbon atoms collect or segregate at the boundaries of silicon carbide – a technologically important ceramic – when the material is exposed to ionizing radiation. The result could help improve our understanding of ceramics in ge...
2020 - 06 - 24
Waste heat is all around you. On a small scale, if your phone or laptop feels warm, that's because some of the energy powering the device is being transformed into unwanted heat.On a larger scale, electric grids, such as high power lines, lose over 5% of their energy in the process of transmission. In an electric power industry that generated more than US$400 billion in 2018, that's a tremendous a...
2020 - 06 - 17
When most people think of ceramics, they might envision their favorite mug or a flowerpot. But modern technology is full of advanced ceramics, from silicon solar panels to ceramic superconductors and biomedical implants.Many of those advanced polycrystalline ceramics are combinations of crystalline grains which, at the microscopic level, resemble a stone fence held together with limestone mortar. ...
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel: 4000 778 909

Guangzhou Branch
Tel: 020-8327 6389

IACE CHINA Official Website