News

News

Scientists Have Developed High-strength Material For Aircraft Industry

Date: 2018-12-25
Views: 108

Scientists Have Developed High-strength Material For Aircraft Industry


Scientists of the Far Eastern Federal University (FEFU) and the Russian Academy of Sciences (RAS) have designed a new, high-strength ceramic material that can withstand prolonged exposure to supersonic airflow at temperatures above 2600°C.


With such characteristics, the material can be used in the aviation industry for aircraft nose cones and wings.


The new material was synthesized from a compound of hafnium diboride (HfB2) mixed with nanocrystalline silicon carbide (nc-SiC) using sol-gel and spark plasma sintering technologies. The strength of the ceramic composite was tested under the influence of supersonic airflow by means of a high-frequency induction plasmatron. After the 40-minute exposure to the supersonic airflow, the ceramic sample its mass loss was only 0.04 percent. The thickness of the oxidized layer under these conditions was 10 to 20 micrometers. Also, there was no formation of fields of low SiC content. The experiment confirmed the high durability characteristics of the composite.


"High-tech ceramics is very promising for industrial applications. The material can be used for the structural basis of nose cones and sharp edges of aircraft wings, which undergo significant temperature fluctuations during super-speed heating (up to 2600 ° C)," said Evgeniy Papynov of the Laboratory for Nuclear Technologies at FEFU School of Natural Sciences.  


Via: https://phys.org/news/2018-12-scientists-high-strength-material-aircraft-industry.html

News / Recommended news More
2019 - 02 - 12
Fraunhofer IAF develops electronic components and systems based on GaN. The image shows a processed GaN wafer. Credit: Fraunhofer Institute for Applied Solid State Physics IAFThe electronics market is growing constantly and so is the demand for increasingly compact and efficient power electronic systems. The predominant electronic components based on silicon will in the foreseeable future no longe...
2019 - 01 - 21
Medical magnetic resonance imaging, high-power microwave generators, superconducting magnetic energy storage units, and the solenoids in nuclear fusion reactors are very different technologies which all critically rely on the ability of superconducting materials to carry and store large electric currents in a compact space without overheating or dissipating large amounts of energy.Despite their ex...
2019 - 01 - 14
Solar Concentrator Array. Credit: Wikimedia CommonsOpen-cell materials, such as metal and ceramic foams, have been extensively utilized in high-temperature applications due to their light weight, good flow-mixing capability, and ability to cover a large surface area. They are commonly composed of interconnected solid struts and accessible void spaces, as shown in Fig. 1.Figure 1 Typical open-cell ...
2019 - 01 - 08
Researchers have developed a ceramic-based mechanical pump able to operate at record temperatures of more than 1,400 degrees Celsius (1,673 Kelvin), opening the door to a new generation of energy conversion and storage systems.The pump was developed by researchers at the Georgia Institute of Technology in collaboration with researchers from Purdue University and Stanford University. The research w...
Share:
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel: 4000 778 909 
E-mail:irisexpo@163.com

Guangzhou Branch
Tel: 020-8327 6389
E-mail:iacechina@unifair.com

IACE CHINA Official Website
犀牛云提供企业云服务
犀牛云提供云计算服务
Scan