News

News

Scientists Have Developed High-strength Material For Aircraft Industry

Date: 2018-12-25
Views: 143

Scientists Have Developed High-strength Material For Aircraft Industry


Scientists of the Far Eastern Federal University (FEFU) and the Russian Academy of Sciences (RAS) have designed a new, high-strength ceramic material that can withstand prolonged exposure to supersonic airflow at temperatures above 2600°C.


With such characteristics, the material can be used in the aviation industry for aircraft nose cones and wings.


The new material was synthesized from a compound of hafnium diboride (HfB2) mixed with nanocrystalline silicon carbide (nc-SiC) using sol-gel and spark plasma sintering technologies. The strength of the ceramic composite was tested under the influence of supersonic airflow by means of a high-frequency induction plasmatron. After the 40-minute exposure to the supersonic airflow, the ceramic sample its mass loss was only 0.04 percent. The thickness of the oxidized layer under these conditions was 10 to 20 micrometers. Also, there was no formation of fields of low SiC content. The experiment confirmed the high durability characteristics of the composite.


"High-tech ceramics is very promising for industrial applications. The material can be used for the structural basis of nose cones and sharp edges of aircraft wings, which undergo significant temperature fluctuations during super-speed heating (up to 2600 ° C)," said Evgeniy Papynov of the Laboratory for Nuclear Technologies at FEFU School of Natural Sciences.  


Via: https://phys.org/news/2018-12-scientists-high-strength-material-aircraft-industry.html

News / Recommended news More
2020 - 01 - 16
Last week India’s aluminium industry called upon New Delhi to cut basic customs duties on aluminium fluoride and other raw materials necessary for aluminium production, as such duties make it all but impossible for domestic producers to compete in the global marketplace.In comments regarding the proposed Union Budget for the next fiscal year, the Aluminium Association of India (AAI) aske...
2020 - 01 - 10
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires. Engineers at the University of Illinois have developed a solid polymer-based electrolyte that can self-heal after damage -- and the material can also be recycled without the use of harsh chemicals or high temperatures.The new study could he...
2020 - 01 - 03
When the volcano, Eyjafjallajökull, erupted in Iceland in 2010, it paralyzed air traffic in large parts of Europe. Volcanoes pose a threat to aircrafts as ash, which commonly contains calcium magnesium aluminum silicates (CMAS), causes significant damage to turbines. Similarly, fly ash, which is a fine powder produced as a byproduct of burning pulverized coal in electric generation power plan...
2019 - 12 - 27
Since the early 20th Century, we have been in the midst of an energy crisis and environmental burden where global warming and limited energy resources are of the utmost concern. Thermoelectric ceramics are becoming increasingly studied for their potential use in energy generators and thermoelectric harvesting.Thermoelectric MaterialsThermoelectric materials convert waste heat energy into elec...
Share:
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel: 4000 778 909 
E-mail:irisexpo@163.com

Guangzhou Branch
Tel: 020-8327 6389
E-mail:iacechina@unifair.com

IACE CHINA Official Website
犀牛云提供企业云服务
犀牛云提供云计算服务
Scan