Ceramic Pump Developed Capable of Moving Molten Metals

Date: 2019-01-08
Views: 176

Researchers have developed a ceramic-based mechanical pump able to operate at record temperatures of more than 1,400 degrees Celsius (1,673 Kelvin), opening the door to a new generation of energy conversion and storage systems.

Ceramic pump developed capable of moving molten metals

The pump was developed by researchers at the Georgia Institute of Technology in collaboration with researchers from Purdue University and Stanford University. The research was supported by the Advanced Research Projects Agency-Energy (ARPA-E) and reported in the October 12 issue of the journal Nature.

The newly developed pump could make it easier to achieve high efficiency, low-cost thermal storage, providing a new way to store renewable energy generated by wind and solar power, as well as improving the process for generating hydrogen directly from fuels such as methane.

"Until now, we've had a ceiling for the highest temperatures at which we could move heat and store it, so this demonstration really enables energy advances, especially in renewables," said Asegun Henry, an assistant professor in Georgia Tech's Woodruff School of Mechanical Engineering.

Ceramic pump developed capable of moving molten metals
Georgia Tech Graduate Student Caleb Amy holds a ceramic gear developed for a pump able to transfer molten tin at more than 1,400 degrees Celsius.
Ga. Tech/Christopher Moore

“The hotter we can operate, the more efficiently we can store and utilize thermal energy. This work will provide a step change in the infrastructure because now we can use some of the highest temperature materials to transfer heat. These materials are also the hardest materials on Earth.”

Thermal energy most valuable at high temperatures

The temperature of liquid metals we can pump usually caps out at about 1,300 Kelvin (1,027 degrees Celsius) simply because there are very few pump-building materials that can stay solid or maintain chemical stability at higher temperatures than 1,300 Kelvin.

However, thermal energy is fundamental to power generation and many industrial processes and is most valuable at high temperatures because entropy – which makes thermal energy unavailable for conversion – declines at higher temperatures. With the newly developed pump, molten metals such as molten tin or molten silicon could replace molten salt used in thermal storage and transfer.

Ceramic pump developed capable of moving molten metals
Graduate Student Caleb Amy pours molten tin into a crucible in the laboratory of Asegun Henry at Georgia Tech. A new ceramic-based pump designed and tested at Georgia Tech was used to transfer molten tin at more than 1,400 degrees Celsius.
Ga. Tech/Christopher Moore

“The hotter you can operate, the more you can convert thermal energy to mechanical energy or electrical energy,” Henry explained. “But when containment materials like metals get hot, they become soft and that limits the whole infrastructure.”

A carefully engineered ceramic pump

It is well known that ceramic materials can withstand high heat, but they become brittle. And many researchers have said ceramics can't be used in mechanical applications like pumps because of this. However, Henry and graduate student Caleb Amy, the first author of the paper, challenged that idea and tried to make a ceramic pump, anyway.

“We weren’t certain that it wouldn’t work, and for the first four times, it didn’t,” Henry said. They developed an external pump with rotating gear teeth to suck in the liquid tin and push it out of an outlet. This technology is different from centrifugal and other pump technologies.

For one thing, materials for the pump had to be chosen to allow for expansion and contraction of the pump with heat, while an appropriates material for sealing the pump had to be used. The researchers used graphite for the piping, joints, and seals, as well as a ceramic material called Shapal, “a machinable aluminum-nitride-rich composite,” because it had similar heat expansion properties as graphite.

Ceramic pump developed capable of moving molten metals
Shapal Hi M Soft - machinable aluminum nitride ceramic, exhibiting excellent machinability and strength.
Ceramic Substrates and Components Ltd

The gears were custom-manufactured by a commercial supplier and modified in Henry’s lab in the Carbon Neutral Energy Solutions (CNES) Laboratory at Georgia Tech.

“What is new in the past few decades is our ability to fabricate different ceramic materials into large chunks of material that can be machined,” Henry explained. “The material is still brittle and you have to be careful with the engineering, but we’ve now shown that it can work.”

The pump operated for 72 hours continuously at a few hundred revolutions per minute at an average temperature of 1,473 Kelvin – with brief operation up to 1,773 Kelvin in other experimental runs. And while the team used Shapal because of the ease of machining the material, the pump did sustain some wear. However, Henry says other ceramics with greater hardness will overcome that issue, and the team is already working on a new pump made with silicon carbide.

Ceramic pump developed capable of moving molten metals
Georgia Tech Graduate Student Caleb Amy holds an infrared camera for remotely measuring temperature, which was used in research on a ceramic-based pump able to operate at temperatures of more than 1,400 degrees Celsius.
Ga. Tech/Christopher Moore

“It appears likely that storing energy in the form of heat could be cheaper than any other form of energy storage that exists,” Henry said. “This would allow us to create a new type of battery. You would put electricity in when you have an excess, and get electricity back out when you need it.”


News / Recommended news More
2019 - 11 - 11
A group of scientists led by Artem Oganov of Skoltech and the Moscow Institute of Physics and Technology, and Ivan Troyan of the Institute of Crystallography of RAS has succeeded in synthesizing thorium decahydride (ThH10), a new superconducting material with the very high critical temperature of 161 kelvins. A truly remarkable property of quantum materials, superconductivity is the complete ...
2019 - 11 - 07
Imagine a device that can sit outside under blazing sunlight on a clear day, and without using any power cool things down by more than 23 degrees Fahrenheit (13 degrees Celsius). It almost sounds like magic, but a new system designed by researchers at MIT and in Chile can do exactly that.The device, which has no moving parts, works by a process called radiative cooling. It blocks incoming sunlight...
2019 - 10 - 30
Researchers have developed a new procedure for producing materials that require high hardness and strength.According to the researchers, including those from the University of Seville in Spain, the material is a very hard black solid, which remains stable at very high temperatures, and is ultra-resistant to radioactivity. The team has made a variety of the compound boron carbide—one of the ha...
2019 - 10 - 25
Oct. 24, 2019 - Indian State-run National Aluminium Company Limited (Nalco) is facing an acute shortage of coal supplies of up to almost 50% of its daily requirement to fuel its 1 200 MW of captive thermal power plant, risking the closure of its smelting potlines.Nalco, which operates a 460 000 t aluminium smelter at Angul in the eastern state of Odisha, sources its coal requirements from Mahanadi...
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel: 4000 778 909

Guangzhou Branch
Tel: 020-8327 6389

IACE CHINA Official Website