News

News

No Furnace Needed: Engineers Create Laser That Can Easily Weld Ceramics Together

Date: 2019-08-28
Views: 134

No Furnace Needed: Engineers Create Laser That Can Easily Weld Ceramics Together

We live in a ceramic world. Ceramics are everywhere even in the world of engineering. The most important and general property of ceramics is that they are refractory. What does this mean? They are “rough-and-tumble” materials that will take large amounts of abuse in a wide range of situations. 


Ceramic tiles are used for space shuttles. The composite is able to withstand tremendous temperatures and was even used to protect areas of the space shuttle that would rise above 1,260°C. Ceramics have high melting points, great hardness and strength, tremendous durability, and great chemical inertness. So why not use them all the time? 


The process of welding ceramics together has traditionally been difficult because they need high temperatures to melt which in turn can expose them to “extreme temperature gradients that cause cracking”. However, researchers from the University of California San Diego and the University of California Riverside have come out with a solution to this problem. 


Using lasers on ceramics 

Engineers from both teams have developed an ultrafast pulsed laser that can be used to melt ceramic materials together, fusing them together. What makes this so special? Aside from not even needing a furnace, the new laser process works in ambient conditions and uses less than 50 watts of laser power. 


As mentioned above, ceramics are of great interest and have a host of applications. In the study, researchers discuss using ceramics for biomedical implants and as protective casings in electronics. In short, you could create scratch-resistant smart mobile devices, metal-free pacemakers, and electronics for space travel. 


'Right now there is no way to encase or seal electronic components inside ceramics because you would have to put the entire assembly in a furnace, which would end up burning the electronics,” said Javier E. Garay, a professor of mechanical engineering and materials science and engineering at UC San Diego.


How does the laser work? 

The ultrafast pulsed laser welding process was created out of the vision to create a series of short laser pulses along the interface of two ceramic parts. This laser heat builds up only at the interface and causes localized melting. To create this system researchers worked on optimizing two aspects of their experiment. 


First, they focused their attention on the laser parameters which included exposure time, number of laser pulses, and duration of the pulse. Next, they worked on the transparency of the ceramic material. 


'The sweet spot of ultrafast pulses was two picoseconds at the high repetition rate of one megahertz, along with a moderate total number of pulses. This maximized the melt diameter, minimized material ablation, and timed cooling just right for the best weld possible,' said mechanical engineering Guillermo Aguilar. 


Right now the process is just being used on small ceramic parts no bigger than two centimeters in size. The engineers eventually hope to optimize it for different types of materials and geometries. 


Via: https://interestingengineering.com




News / Recommended news More
2020 - 01 - 16
Last week India’s aluminium industry called upon New Delhi to cut basic customs duties on aluminium fluoride and other raw materials necessary for aluminium production, as such duties make it all but impossible for domestic producers to compete in the global marketplace.In comments regarding the proposed Union Budget for the next fiscal year, the Aluminium Association of India (AAI) aske...
2020 - 01 - 10
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires. Engineers at the University of Illinois have developed a solid polymer-based electrolyte that can self-heal after damage -- and the material can also be recycled without the use of harsh chemicals or high temperatures.The new study could he...
2020 - 01 - 03
When the volcano, Eyjafjallajökull, erupted in Iceland in 2010, it paralyzed air traffic in large parts of Europe. Volcanoes pose a threat to aircrafts as ash, which commonly contains calcium magnesium aluminum silicates (CMAS), causes significant damage to turbines. Similarly, fly ash, which is a fine powder produced as a byproduct of burning pulverized coal in electric generation power plan...
2019 - 12 - 27
Since the early 20th Century, we have been in the midst of an energy crisis and environmental burden where global warming and limited energy resources are of the utmost concern. Thermoelectric ceramics are becoming increasingly studied for their potential use in energy generators and thermoelectric harvesting.Thermoelectric MaterialsThermoelectric materials convert waste heat energy into elec...
Share:
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel: 4000 778 909 
E-mail:irisexpo@163.com

Guangzhou Branch
Tel: 020-8327 6389
E-mail:iacechina@unifair.com

IACE CHINA Official Website
犀牛云提供企业云服务
犀牛云提供云计算服务
Scan