News

News

New antenna tech to equip ceramic coatings with heat radiation control

Date: 2019-11-29
Views: 241

The gas turbines powering aircraft engines rely on ceramic coatings that ensure structural stability at high temperatures. But these coatings don't control heat radiation, limiting the performance of the engine.


Researchers at Purdue University have engineered ceramic 'nanotubes' that behave as thermal antennas, offering control over the spectrum and direction of high-temperature heat radiation.


'By controlling radiation at these high temperatures, we can increase the lifetime of the coating. The performance of the engine would also increase because it could be kept hotter with more isolation for longer periods of time,' said Zubin Jacob, an associate professor of electrical and computer engineering at Purdue.


The work is part of a larger search in the field for a wide range of materials that can withstand higher temperatures. In 2016, Jacob's team developed a thermal 'metamaterial' -- made of tungsten and hafnium oxide -- that controls heat radiation with the intention of improving how waste heat is harvested from power plants and factories.


A new class of ceramics would expand on ways to more efficiently use heat radiation.


Jacob's team, in collaboration with Purdue professors Luna Lu and Tongcang Li, built nanotubes out of an emerging ceramic material called boron nitride, known for its high thermal stability.


These boron nitride nanotubes control radiation through oscillations of light and matter, called polaritons, inside the ceramic material. High temperatures excite the polaritons, which the nanotubes -- as antennas -- then couple efficiently to outgoing heat radiation.


The antennas could bring the ability to accelerate the radiation, perform enhanced cooling of a system or send information in very specific directions or wavelengths, Jacob said.


The researchers plan to engineer more ceramic materials with polaritonic features for a host of different applications.


'Polaritonic ceramics can be game changing and we want them to be used widely,' Jacob said.


This research was performed in the Purdue Discovery Park Birck Nanotechnology Center and is supported through Nascent Light-Matter Interactions, a program by the Defense Advanced Research Projects Agency. The program is led by Purdue University's School of Electrical and Computer Engineering.


Via: https://www.sciencedaily.com/releases/2019/11/191121183927.htm

Note: Content may be edited for style and length.


News / Recommended news More
2020 - 02 - 20
President, Sri Lanka Ceramics and Glass Council, Anura WarnakulasooriyaThe ceramics industry uses a lot of energy in terms of LP gas, furnace oil, kerosene and electricity. High energy prices in Sri Lanka increases the cost of production and the industry constantly struggles to maintain competitive prices against competing countries, President, Sri Lanka Ceramics and Glass Council (SLCGC), Anura W...
2020 - 01 - 22
Replacing the volatile and flammable liquid or polymer electrolytes now used in lithium-ion batteries with inorganic solid-state lithium-ionic ceramic conductors could significantly improve both safety and performance of the cells. Solid-state conductors would allow for novel cathode and anode chemistry, prevent the growth of Li-metal dendrites and push miniaturization.Though researchers have inve...
2020 - 01 - 16
Last week India’s aluminium industry called upon New Delhi to cut basic customs duties on aluminium fluoride and other raw materials necessary for aluminium production, as such duties make it all but impossible for domestic producers to compete in the global marketplace.In comments regarding the proposed Union Budget for the next fiscal year, the Aluminium Association of India (AAI) aske...
Share:
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel: 4000 778 909 
E-mail:irisexpo@163.com

Guangzhou Branch
Tel: 020-8327 6389
E-mail:iacechina@unifair.com

IACE CHINA Official Website
犀牛云提供企业云服务
犀牛云提供云计算服务
Scan