News

News

New antenna tech to equip ceramic coatings with heat radiation control

Date: 2019-11-29
Views: 227

The gas turbines powering aircraft engines rely on ceramic coatings that ensure structural stability at high temperatures. But these coatings don't control heat radiation, limiting the performance of the engine.


Researchers at Purdue University have engineered ceramic 'nanotubes' that behave as thermal antennas, offering control over the spectrum and direction of high-temperature heat radiation.


'By controlling radiation at these high temperatures, we can increase the lifetime of the coating. The performance of the engine would also increase because it could be kept hotter with more isolation for longer periods of time,' said Zubin Jacob, an associate professor of electrical and computer engineering at Purdue.


The work is part of a larger search in the field for a wide range of materials that can withstand higher temperatures. In 2016, Jacob's team developed a thermal 'metamaterial' -- made of tungsten and hafnium oxide -- that controls heat radiation with the intention of improving how waste heat is harvested from power plants and factories.


A new class of ceramics would expand on ways to more efficiently use heat radiation.


Jacob's team, in collaboration with Purdue professors Luna Lu and Tongcang Li, built nanotubes out of an emerging ceramic material called boron nitride, known for its high thermal stability.


These boron nitride nanotubes control radiation through oscillations of light and matter, called polaritons, inside the ceramic material. High temperatures excite the polaritons, which the nanotubes -- as antennas -- then couple efficiently to outgoing heat radiation.


The antennas could bring the ability to accelerate the radiation, perform enhanced cooling of a system or send information in very specific directions or wavelengths, Jacob said.


The researchers plan to engineer more ceramic materials with polaritonic features for a host of different applications.


'Polaritonic ceramics can be game changing and we want them to be used widely,' Jacob said.


This research was performed in the Purdue Discovery Park Birck Nanotechnology Center and is supported through Nascent Light-Matter Interactions, a program by the Defense Advanced Research Projects Agency. The program is led by Purdue University's School of Electrical and Computer Engineering.


Via: https://www.sciencedaily.com/releases/2019/11/191121183927.htm

Note: Content may be edited for style and length.


News / Recommended news More
2019 - 12 - 06
To seamlessly integrate electronics with the natural world, materials are needed that are both stretchable and degradable -- for example, flexible medical devices that conform to the surfaces of internal organs, but that dissolve and disappear when no longer needed. However, introducing these properties to electronics has been challenging. Now, researchers reporting in ACS Central Science...
2019 - 11 - 29
The gas turbines powering aircraft engines rely on ceramic coatings that ensure structural stability at high temperatures. But these coatings don't control heat radiation, limiting the performance of the engine.Researchers at Purdue University have engineered ceramic 'nanotubes' that behave as thermal antennas, offering control over the spectrum and direction of high-temperature heat radiation.'By...
2019 - 11 - 11
A group of scientists led by Artem Oganov of Skoltech and the Moscow Institute of Physics and Technology, and Ivan Troyan of the Institute of Crystallography of RAS has succeeded in synthesizing thorium decahydride (ThH10), a new superconducting material with the very high critical temperature of 161 kelvins. A truly remarkable property of quantum materials, superconductivity is the complete ...
2019 - 11 - 07
Imagine a device that can sit outside under blazing sunlight on a clear day, and without using any power cool things down by more than 23 degrees Fahrenheit (13 degrees Celsius). It almost sounds like magic, but a new system designed by researchers at MIT and in Chile can do exactly that.The device, which has no moving parts, works by a process called radiative cooling. It blocks incoming sunlight...
Share:
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel: 4000 778 909 
E-mail:irisexpo@163.com

Guangzhou Branch
Tel: 020-8327 6389
E-mail:iacechina@unifair.com

IACE CHINA Official Website
犀牛云提供企业云服务
犀牛云提供云计算服务
Scan