News

News

New polymer material may help batteries become self-healing, recyclable

Date: 2020-01-10
Views: 244

Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires. Engineers at the University of Illinois have developed a solid polymer-based electrolyte that can self-heal after damage -- and the material can also be recycled without the use of harsh chemicals or high temperatures.


The new study could help manufacturers produce recyclable, self-healing commercial batteries.


As lithium-ion batteries go through multiple cycles of charge and discharge, they develop tiny, branchlike structures of solid lithium called dendrites, the researchers said. These structures reduce battery life, cause hotspots and electrical shorts, and sometimes grow large enough to puncture the internal parts of the battery, causing explosive chemical reactions between the electrodes and electrolyte liquids.


There has been a push by chemists and engineers to replace the liquid electrolytes in lithium-ion batteries with solid materials such as ceramics or polymers, the researchers said. However, many of these materials are rigid and brittle resulting in poor electrolyte-to-electrode contact and reduced conductivity.


'Solid ion-conducting polymers are one option for developing nonliquid electrolytes,' said Brian Jing, a materials science and engineering graduate student and study co-author. 'But the high-temperature conditions inside a battery can melt most polymers, again resulting in dendrites and failure.'


Past studies have produced solid electrolytes by using a network of polymer strands that are cross-linked to form a rubbery lithium conductor. This method delays the growth of dendrites; however, these materials are complex and cannot be recovered or healed after damage, Jing said.


To address this issue, the researchers developed a network polymer electrolyte in which the cross-link point can undergo exchange reactions and swap polymer strands. In contrast to linear polymers, these networks actually get stiffer upon heating, which can potentially minimize the dendrite problem, the researchers said. Additionally, they can be easily broken down and resolidified into a networked structure after damage, making them recyclable, and they restore conductivity after being damaged because they are self-healing.


'This new network polymer also shows the remarkable property that both conductivity and stiffness increase with heating, which is not seen in conventional polymer electrolytes,' Jing said.


'Most polymers require strong acids and high temperatures to break down,' said materials science and engineering professor and lead author Christopher Evans. 'Our material dissolves in water at room temperature, making it a very energy-efficient and environmentally friendly process.'


The team probed the conductivity of the new material and found its potential as an effective battery electrolyte to be promising, the researchers said, but acknowledge that more work is required before it could be used in batteries that are comparable to what is in use today.


'I think this work presents an interesting platform for others to test,' Evans said. 'We used a very specific chemistry and a very specific dynamic bond in our polymer, but we think this platform can be reconfigured to be used with many other chemistries to tweak the conductivity and mechanical properties.'


Via: https://www.sciencedaily.com/releases/2019/12/191223122835.htm

Note: Content may be edited for style and length.




News / Recommended news More
2020 - 07 - 02
A Bochum-based team has developed a new process for zinc oxide layers that can be used for nitrogen oxide sensors as well as protection layer on plastic.The application of zinc oxide layers in industry is manifold and ranges from the protection of degradable goods to the detection of toxic nitrogen oxide gas. Such layers can be deposited by atomic layer deposition (ALD) which employs typically che...
2020 - 07 - 02
Grain boundaries in ceramics may not be as chemically stable as previously thought. So say researchers at the University of Wisconsin-Madison in the US who have found that carbon atoms collect or segregate at the boundaries of silicon carbide – a technologically important ceramic – when the material is exposed to ionizing radiation. The result could help improve our understanding of ceramics in ge...
2020 - 06 - 24
Waste heat is all around you. On a small scale, if your phone or laptop feels warm, that's because some of the energy powering the device is being transformed into unwanted heat.On a larger scale, electric grids, such as high power lines, lose over 5% of their energy in the process of transmission. In an electric power industry that generated more than US$400 billion in 2018, that's a tremendous a...
2020 - 06 - 17
When most people think of ceramics, they might envision their favorite mug or a flowerpot. But modern technology is full of advanced ceramics, from silicon solar panels to ceramic superconductors and biomedical implants.Many of those advanced polycrystalline ceramics are combinations of crystalline grains which, at the microscopic level, resemble a stone fence held together with limestone mortar. ...
Share:
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel: 4000 778 909 
E-mail:irisexpo@163.com

Guangzhou Branch
Tel: 020-8327 6389
E-mail:iacechina@unifair.com

IACE CHINA Official Website
犀牛云提供企业云服务
犀牛云提供云计算服务
Scan